‘ ! ! . LLNL-TR-654332

LAWRENCE
LIVERM ORE
NATIONAL

womron | ESTIMating the Impact of Advanced
Architectures on ASC Multiphysics Codes
In the Absence of an Exascale Initiative

C. H. Still, C. J. Clouse, M. G. McCoy, J. R. Neely,
B. S. Pudliner, J. A. Rathkopf, M. R. Zika

May 13, 2014

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Estimating the Impact of Advanced Architectures on ASC
Multiphysics Codes in the Absence of an Exascale Initiative

C. H. Still, C. J. Clouse, M. G. McCoy, J. R. Neely, B. S. Pudliner,
J. A. Rathkopf, and M. R. Zika
Lawrence Livermore National Laboratory

The Eras of High Performance Computing and Lessons Learned

Figure 1 depicts the three eras in High Performance Computing as experience by the
National Nuclear Security Administration and its predecessors thus far. Each era
brought lessons that are largely relevant today as we consider future architecture
technology. We review them briefly here for reference in the following sections.

Large sequential processing machines populated the first era, dubbed Mainframe
Computing. One instruction was executed at a time in serial fashion when a code
ran. In this era, memory capacity (how much data could be stored) was sometimes
1.00E+17 Many Core Era
__=’_,_,_’——>

Dawn

1.00E+16 Sequola

Petascale

1.00E+15 BlueGene/L upgrade —
BlueGene/L _',/""’)

White® ——« >

1.00E+14

Terascale

1.00E+13
Blue Paciflc wp—

1.00E+12

@
= 1.00E411
8
o
o . ! |
2 1.00E+10 V4 Distributed Memory Era (MPP)
—
7/

1.00E+09
o /
§ 1.00E+08
w
)
§ 1.00E+07 Vector Era

1.00E+06
2
3 1.00E+05 Mainframe Era
3
K}
g 1.00E+04
peak 10003

R T T SO N S S N T SRS

(flops) & o ‘,@ & ‘}6* & ¢ ¢ v,)‘ & vo‘s v y"’ o W@ o IO ,5)e<° &

Figure 1. Eras of High Performance Computing

an issue, leading to out-of-core methods which kept part of the data on secondary
storage, and relied on exchanging memory resident data that was not immediately
needed for the non-resident data required to continue computing. As computer
memories grew, larger calculations could fit entirely in the resident memory, and
out-of-core calculations were reserved for the largest simulations needed.

LLNL-TR-654332

Towards the end of the CDC 7600, vector computing began to emerge as the
direction for future hardware. The first major design was the CDC Star-100, which
offered a large performance boost for vector operations, but very little (if any)
performance improvement for scalar operations. Moving to vector processing
required modifying algorithms to process more than one data item at a time.
However, some operations are inherently scalar calculations and could not be
vectorized. In the multiphysics codes of that time, approximately 30% of the
calculation could be vectorized, thus the overall simulation performance was limited
by the time to complete the scalar portions (Amdahl’s Law), leading to very little
overall improvement. The Cray-1 was designed differently. Armed with the
knowledge that scalar processing performance was a concern, that machine was
designed for a much better balance: much improved scalar performance, even
though the vector performance was not as high as the Star. The overall result was
much improved simulation runtimes.

As the gains available in vector performance began to wane, large expensive vector
processors were replaced by increased numbers of cost-effective serial processors,
connected by a fast network. Each processor had a local memory (hence Distributed
Memory Computing), so that physics problems had to be partitioned into domains,
which would then be mapped onto separate processors. Any non-resident data
needed for a computation would have to be explicitly communicated from another
processor. Poor partitioning of the problem would lead to an imbalance in the work
assigned to each processor, leaving some processors with too little work, and others
with too much. The standardized Message Passing Interface (MPI) was designed to
be a portable way to implement the explicit messages. Algorithms had to be
redesigned again, undoing the vectorization of the previous era, and employing
efficient communicating serial processes instead. In particular, optimizations done
for higher vector performance were often contrary to optimizations needed for
cache efficiency; without algorithm redesign, performance would have poor on the
new processors. As with the out-of-core issues before, performance was limited by
the amount of data sent, the frequency of the messages, and the distances of the
message targeted processors. The advantage was that data motion could be
controlled explicitly.

By the end of the Distributed Memory era, memory available on each node had
become quite large, and the bandwidth available was more than sufficient to keep
the processor supplied with the data needed for multiphysics calculations.
Furthermore, the processors had become much more advanced. A small amount of
memory was located inside the processor (a cache) so that data could be reused
(avoiding extra store and fetch operations), avoiding extra memory motion. In
addition, more recent server chips could handle memory latency (time delay
between when data is requested by the processor, and when it begins to arrive)
implicitly via out-of-order execution: when the current instruction stalls awaiting
data, the processor is able to examine and execute downstream instructions if the
necessary data is already resident. The gold standard for these systems was the IBM
Power5-based ASC Purple machine (in service, 2005-2010). The system was
extremely well-balanced for computation, but not very energy efficient. If the out-

LLNL-TR-654332

of-order execution was insufficient to manage memory latency, threads (light-
weight processes between which processing could quickly shift) could be employed.
The machine was so well-provisioned that threading on ASC Purple was never found
to improve performance.

With the advent of the Blue Gene line, light-weight processors were introduced with
the goal being higher energy efficiency. Unlike the server chips used in other
distributed memory machines, the BG cores executed instructions in-order, and thus
threading was required to manage memory latency, and SIMD /vectorization was
introduced. In the last of the Blue Gene line (BG/Q), each node has 16 processors,
each with 4 hardware threads and 4-wide SIMD, sharing a memory, and connected
to the other nodes by a fast network. The cores are capable of processing faster
than data can be moved into the cores. Thus, memory bandwidth (the rate at which
data can be moved into a processor) is becoming the performance-limiting
constraint. This sets the stage for the emerging next era of advanced architectures.

Emerging Architectures

In addition to the manycore model (described by the Blue Gene series above),
Figure 2 depicts well-known architectures and several other emerging advanced

I compute New Programming Models Required
I Vemory 1
I Cache

Ve D A @ h 4

“Far" MEM

o A 4 A 4

c. 1995. c.2000-2010. ¢©.2010. .2014. c. 2015. c. 2017.
Single CPU Multiple (multi- Accelerators Accelerators Simple low- Processor-in-
pernode with core) CPU's per (GPGPUs) share common Power cores memory (PIM).
main node sharing usheran eraof view of memory and Non-
memory. common main heterogeneity. with CPU Uniform

memory Memory

Access

Figure 2 The Evolution of HPC Node Architectures

architectures. The first two blocks in the figure describe node architectures
prevalent in the Distributed Memory computing era. Each of the architectures listed
under the grouping “New Programming Models Required” will require changing the
current algorithms (for distributed memory architectures) in order to execute on
the new architecture. In particular, the explicit-communication, serial processing
paradigm that has served so well through the Distributed Memory Computing era
(ie, the “ASCI era”) is not sufficient to address the new architectural characteristics.

LLNL-TR-654332

The new characteristics not only describe how and where computation is done, but
also where data is stored, and how it is accessed.

In a GPU (block 3), the streaming multiprocessors work in a symmetric
multithreading (SIMT, or single-instruction, multiple-thread) fashion. Fast memory
is located on the GPU accelerator directly, but capacity is limited, so the bulk of the
calculation is stored off the accelerator. Access to the accelerator from the bulk
memory is via a slow link, compared to the on-package memory (at 10x higher
bandwidth). Thus, reminiscent of out-of-core algorithms, performance is
dramatically affected by data placement and the ability to overlap data transfers
with computation. In newer GPUs (block 4, e.g., nVidia CUDA 6 supports this with
the Maxwell accelerator), there is a unified virtual address space so that data
transfers can be handled implicitly, rather than explicitly, assuming a compiler
(perhaps with directives inserted into the source-code by the programmer) can
understand the data dependencies sufficiently to optimize for data placement. Since
the GPU shares one instruction-stream, optimizing data motion to coalesce memory
requests gives the best performance.

The manycore architecture (block 5) is reminiscent of the Blue Gene architecture,
except that memory is split into two classes: a smaller “fast” memory with high
bandwidth located on the manycore package directly, and a much larger “far”
memory accessed via a slow link. This two-level memory is analogous to that seen
on the GPU architectures. Unlike the GPU, each of the cores has its own instruction
stream, and is fetching its own data. Thus, coalescing data reads is not necessary,
but managing resource contention is required.

The final emerging architecture is still a research topic: processing in memory. This
is perhaps the most energy efficient manner for processing, but requires a complete
algorithm redesign: instead of bringing the data into the compute engine, the
instruction stream is shipped off into the memory processor. High performance is
obtained by distributing the data in such a way as to keep reusing the same
instruction stream as long as possible. Calculations that cannot be performed
directly in memory would be done in a centralized processor in a more traditional
manner (data fetched from memory, operations performed, results stored back into
memory).

Effect of Advanced Architectures on Multiphysics Performance

Comparing the future architectures described above, a few common characteristics
emerge, in particular, memory locality, memory capacity and memory bandwidth.
These characteristics are becoming the dominant constraints for overall code
performance. In particular, the memory capacity determines how many domains
can be loaded onto a node, and thus how many MPI tasks can be used. Within an
MPI task, the memory bandwidth determines how many floating point operations
can be supported by the availability of data.

LLNL-TR-654332

Figure 3 shows projections for code performance on advanced architectures for the
rest of the decade. In this analysis, we are assuming that the computing platform is
constrained by a $180M procurement cost. Using responses to the E7 Request for

1000
Peak Performance

'cﬁ;‘g
2 100
—
8
c
@
E
2
8 10 Effective Performance

1

2011 2013 2015 2017 2019

Figure 4 Projected Effective Performance of Multiphysics Codes on Future Architectures

Information on Exascale Architectures (2011), we extracted the memory capacity
and bandwidth data available on such a platform in 2015-2020. We further
assumed that the Exascale Initiative was not funded, and that the only investments
were those available within the baseline funding of the ASC Program. Thus, there is
little leverage on vendor roadmaps and technology beyond what would be available
in the typical Non-Recurring Engineering (NRE) portion of the platform
procurement. The vendors candidly responded to the RFI including the scenario
without national investment. The historical trend and future projection of the B:F
(ratio of memory bandwidth to floating point rate, ie the ratio of data transfer rate
to data processing rate) and
1.8 memory capacity are shown in

4 -
g 3': :: % Figure 4. Finally, we assumed
225 = ;E, that the only modifications to the
g - °8 ¥ ASC multiphysics codes would be
! 0.4 % those capable of being carried out
& o % inthe course of the baseline
\&dﬂ'\ é&o"? & \0\0\ O@“ @@ . & E program (ie, no additional
R & & & s investments to ASC for the
54 —e=Mem/core —8-B:F Integrated Codes). Finally,

Figure 3 Memory Capacity and B:F (memory bandwidth to performance is normalized to ASC
floating point rate) for ASC Platforms Purple equivalence, ie. ASC

multiphysics code performance
on the 100 TFlop ASC Purple machine.

LLNL-TR-654332

The 2011 and 2013 data is taken to be best possible code performance based on
available data, as of June 2013, on ASC Cielo and ASC Sequoia. In particular, on ASC
Sequoia, this assumes vectorization up to the memory bandwidth limit. On future
machines, the floating-point capability is growing far faster than the memory
bandwidth to support the computation, leading to the ever-widening gap between
peak performance and effective performance. The amount of threading (increasing
from 2-16), data locality (working set size reduces from 2GB per domain to 512MB
per domain), and amount of data shared (from 0 to 500 MB) within an MPI task is
increasing over time, representing the expectation of improved code optimizations,
which does lead to a slight increase in effective performance through the end of the
decade. However, the overall trend is essentially flat, with less than a factor of 2 in
performance improvement from 2013 to 2020.

Final Thoughts

Without significant investment into both the hardware vendors and the ASC
Program, closing the performance gap will not be possible. Even with investment,
the challenges facing the industry are well documented. Solutions which trade (for
example) improved memory bandwidth for increased memory latency introduce
differing constraints on code performance. Thus, a close coupling between the
vendors and the multiphysics code developers (through a co-design process) is a
critical component to ensure not only that solutions in the codes are possible, but
that practical implementations are developed to meet the constraints imposed by
the vendors’ design trade-offs.

Future versions of this document will incorporate updated information on vendor
technology.

Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

LLNL-TR-654332

